光纖傳感器與激光測距技術(shù)逐漸發(fā)展并出現(xiàn)很多成熟的產(chǎn)品,一方面光纖傳感器抗電磁干擾、耐高溫高壓、耐腐蝕;另一方面激光測距技術(shù)精度高、不需要與被測物體接觸,將這兩種技術(shù)結(jié)合的新型傳感器具有很大的應(yīng)用價(jià)值。這類傳感器本質(zhì)上是一種傳光型光纖傳感器,即將激光測距儀發(fā)出的激光利用光纖傳導(dǎo)與接收,并實(shí)現(xiàn)兩者優(yōu)點(diǎn)的結(jié)合,國內(nèi)外眾多學(xué)者對這種方法進(jìn)行了廣泛的研究并取得了一定的成果。
基于光纖傳感器與激光測距的物位傳感器設(shè)計(jì),通過搭建實(shí)驗(yàn)平臺(tái)進(jìn)行了測試,證明激光測距儀的激光接收回路經(jīng)改造后依然能夠?qū)崿F(xiàn)精確、穩(wěn)定的測量。這種傳感器可通過光纖使電學(xué)系統(tǒng)遠(yuǎn)離測量現(xiàn)場,從而達(dá)到安全要求,在石油、化丁等高危作業(yè)環(huán)境下的料位、液位等的測量應(yīng)用中具有良好的前景。
1 物位傳感器總體設(shè)計(jì)
物位傳感器利用兩條光纖分別用于激光發(fā)射與接收,通過透鏡將發(fā)射激光耦合入發(fā)射光纖,激光順著光纖傳導(dǎo)至另一端由準(zhǔn)直透鏡準(zhǔn)直后發(fā)射出去,激光經(jīng)被測目標(biāo)反射后由接收透鏡會(huì)聚后耦合入接收光纖并傳遞到激光測距傳感器。光纖連接器是用來連接兩段光纖的可拆裝的接口裝置。這里光纖只起到傳導(dǎo)激光的作用,是典型的非功能型光纖傳感器。
2 傳感器各部分器件功能分析與選擇
2. 1 激光測距傳感器部分
激光測距技術(shù)比較復(fù)雜,激光測距傳感器的設(shè)計(jì)需要運(yùn)用電學(xué)、光學(xué)等方面的綜合知識(shí),其本身也是一個(gè)較大的研究領(lǐng)域,在本課題中由于時(shí)間與技術(shù)水平的限制,沒有對激光測距傳感器本身進(jìn)行單獨(dú)的設(shè)計(jì)。目前成熟商用的工業(yè)級(jí)激光測距傳感器性價(jià)比很高,直接采用成熟的激光測距傳感 器產(chǎn)品大大加快了課題的研究進(jìn)度,這里采用了徠卡DLSB15型激光測距傳感器。傳感器結(jié)構(gòu)框圖如圖1所示。
DLSB15型激光測距傳感器技術(shù)參數(shù)如表1所列
2.2 光纖部分
發(fā)射光纖、接收光纖是用于傳導(dǎo)發(fā)射與反射光線的,光纖按其傳輸模式可分為單模光纖與多模光纖兩種,激光在導(dǎo)入光纖時(shí)只有在光纖的接收孔徑角之內(nèi)的光線才能被有效地耦合入光纖,其接收孔徑角與光纖本身的數(shù)值孔參數(shù)NA有關(guān)。兩者的關(guān)系為: 接收孔徑角=arcsin(NA) 其中多模光纖的接收孔徑角較單模光纖要大得多,這里采用了芯徑200 μm階躍型多模光纖,長度均為3m。該光纖數(shù)值孔徑NA值為0.22,光線在光纖中傳導(dǎo)時(shí)的衰減為3 dB/km(850 nm波長時(shí)),光纖長1 km時(shí)其傳輸信號(hào)帶寬大于20MHz。
2.3 激光與光纖耦合部分
2.3.1 激光測距儀端耦合部分 將發(fā)射光纖、接收光纖一端分別與激光測距儀發(fā)射透鏡、接收透鏡通過透鏡組耦合且封裝成一體并與激光測距儀固定連接。這里采用直徑12 mm的雙膠合鏡進(jìn)行耦合。
2.3.2 測量探頭部分 將發(fā)射光纖與接收光纖末端通過透鏡耦合并封裝成一體,組成測量探頭。其中發(fā)射光纖耦合部分采用直徑6mm非球面準(zhǔn)直透鏡將從光纖發(fā)出的激光準(zhǔn)直,接收光纖部分采用直徑12 mm的雙膠合鏡將反射回的激光耦合入光纖。
2.3.3 光纖連接器部
這里采用FC/FC型光纖連接器,這種光纖連接器性價(jià)比高,可多次插拔且插入損耗較小。
3 傳感器檢測過程
傳感器物位檢測是在裝藥過程中進(jìn)行的,通過推進(jìn)劑裝藥高度的精確測量來實(shí)現(xiàn)對裝藥劑量控制。 激光測距傳感器通過光纖傳導(dǎo)發(fā)射與接收的激光,此時(shí)進(jìn)行檢測得到的檢測結(jié)果L1可以認(rèn)為是激光通過光纖,從激光發(fā)射端到測量探頭所走過的光程d與從測量探頭到被測物質(zhì)表面的距離h之和。這里可以通過實(shí)驗(yàn)確定光程d并提前測得未進(jìn)行裝藥之前的空罐高度D,從而得出所求物位H=D-(L1-d)。
在未開始固體推進(jìn)劑灌裝之前采用傳感器進(jìn)行檢測可以得到L2。此時(shí),L2即激光通過光纖從激光發(fā)射端到探頭間的光程d與未裝藥前的空罐高度D之和。此時(shí)得出所求物位H=L2-L1。因此在進(jìn)行裝藥物位檢測時(shí)將傳感器空罐時(shí)的檢測值L2儲(chǔ)存在系統(tǒng)控制單元中,便可通過數(shù)據(jù)處理由檢測值得出物位。
4 系統(tǒng)安全分析
系統(tǒng)可以通過光纖使激光測距系統(tǒng)遠(yuǎn)離測試現(xiàn)場,實(shí)現(xiàn)測試不帶電,從而避免出現(xiàn)短路、漏電等危險(xiǎn)情況的情況。系統(tǒng)采用激光作為測量的載體,激光本身具有一定的能量,但市場上的相位式激光測距儀大都采用650 nm左右可見紅光,光功率均小于0.95 mW,符合對人眼安全的要求。已有實(shí)驗(yàn)證明這類激光測距儀安全可靠,不會(huì)產(chǎn)生任何熱效應(yīng)。
5 實(shí)驗(yàn)設(shè)計(jì)與分析
我們對系統(tǒng)進(jìn)行了原理性實(shí)驗(yàn),由于實(shí)驗(yàn)條件的限制僅對激光接收回路進(jìn)行了實(shí)驗(yàn)。激光測距儀采用徠卡公司的A2型激光測距儀,激光發(fā)射功率小于0.95 mW。其主要參數(shù)為量程0.06~60 m、測量精度1.5 mm、測量精度±1.5 mm、激光波長635 nm。
實(shí)驗(yàn)平臺(tái)如圖3所示。采用多模石英光纖,工作波長為620~700 nm,光纖長度為0.8 m,芯徑為200μm,激光準(zhǔn)直與接收采直徑為13 mm單透鏡。實(shí)驗(yàn)時(shí)在激光測距儀與被測目標(biāo)間放置了鋼板,完全阻斷了反射激光從原光路進(jìn)入測距儀。經(jīng)過對光路部分的精密調(diào)校,最終激光測距儀可以正常工作并穩(wěn)定地測出數(shù)據(jù)。
實(shí)驗(yàn)首先對系統(tǒng)量程進(jìn)行了測定,經(jīng)過反復(fù)測定得出量程為200~3 512 mm(被測目標(biāo)為淺灰色塑料),當(dāng)被測目標(biāo)與接收透鏡小于200 mm時(shí)還可以測出數(shù)據(jù),但此時(shí)測量速度將明顯變慢。通過實(shí)驗(yàn)使被測目標(biāo)在量程范圍內(nèi)進(jìn)行小范圍位移,對測試測量精度進(jìn)行了測定,實(shí)驗(yàn)數(shù)據(jù)如表2所列。
由實(shí)驗(yàn)數(shù)據(jù)可得系統(tǒng)平均誤差為1.08 mm,測量精度達(dá)到了激光測距儀本身標(biāo)稱的精度,表明測量精度未受光學(xué)系統(tǒng)影響。同時(shí),測距儀的量程大幅度減小,這是由于激光測距儀接收到的光功率減小造成的,衰減主要產(chǎn)生于透鏡與光纖的耦合處,這種衰減可以通過增大透鏡的面積和在透鏡與光纖間填充特殊液體等方式減小。
6 結(jié)論
基于光纖傳感器與激光測距的物位傳感器設(shè)計(jì),通過搭建實(shí)驗(yàn)平臺(tái)進(jìn)行了測試,證明激光測距儀的激光接收回路經(jīng)改造后依然能夠?qū)崿F(xiàn)精確、穩(wěn)定的測量。這種傳感器可通過光纖使電學(xué)系統(tǒng)遠(yuǎn)離測量現(xiàn)場,從而達(dá)到安全要求,在石油、化丁等高危作業(yè)環(huán)境下的料位、液位等的測量應(yīng)用中具有良好的前景。